
Automatic Flow-Control Adaptation for Enhancing

Network Performance in Computational Grids ∗

Wu-chun Feng, Mark K. Gardner and Eric Weigle
({feng,mkg,ehw}@lanl.gov)
Research and Development in Advanced Network Technology (RADIANT)
Advanced Computing Laboratory (ACL)
Computer and Computational Sciences Division
Los Alamos National Laboratory
P.O. Box 1663, M.S. D451
Los Alamos, NM 87545 USA
http: // www. lanl. gov/ radiant/

Abstract. With the advent of computational grids, networking performance over
the wide-area network (WAN) has become a critical component in the grid infras-
tructure. Unfortunately, many high-performance grid applications only use a small
fraction of their available bandwidth because operating systems and their associated
protocol stacks are still tuned for yesterday’s WAN speeds. As a result, network gurus
undertake the tedious process of manually tuning system buffers to allow TCP flow
control to scale to today’s WAN grid environments. And although recent research has
shown how to set the size of these system buffers automatically at connection set-up,
the buffer sizes are only appropriate at the beginning of the connection’s lifetime.
To address these problems, we describe an automated and lightweight technique
called Dynamic Right-Sizing that can improve throughput by as much as an order
of magnitude while still abiding by TCP semantics.

Keywords: auto-tuning, buffer tuning, Dynamic Right-Sizing, flow-control, TCP.

Nomenclature:
KB – 210 bytes; MB – 220 bytes; Kbps – 103 bits per second; Mbps – 106 bits per

second; Gbps – 109 bits per second; PI – protocol interpreter [34].

1. Introduction

TCP has entrenched itself as the ubiquitous transport protocol for
the Internet, as well as for emerging infrastructures such as computa-
tional grids [16, 17], data grids [3, 9], and access grids [10]. However,
parallel and distributed applications running stock TCP implemen-
tations perform abysmally over networks with large bandwidth-delay
products (BDP) such as are are typical in grid-computing environments
and satellite networks [6, 7, 31].
∗ This work was supported by the U.S. Dept. of Energy through Los Alamos

National Laboratory contract W-7405-ENG-36. Any opinions, findings, and conclu-
sions, or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of DOE, Los Alamos National Laboratory.
Los Alamos Unclassified Report (LA-UR) 03-0714

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

jgc2003.tex; 1/02/2003; 0:04; p.1

As noted in [6, 7, 12, 31], congestion- and flow-control adapta-
tion bottlenecks, are the primary reason for this abysmal performance.
The former is a topic of active research beyond the scope of this pa-
per [8, 15, 22]. In order to address the latter problem, grid and network
researchers continue to manually tune buffer sizes to keep the network
pipe full [7, 32, 37], and thus achieve acceptable wide-area network
(WAN) performance in support of grid computing. However, the tuning
process can be quite difficult, particularly for users and developers who
are not network experts. It involves calculating the bandwidth of the
bottleneck link and the round-trip time (RTT) for a given connec-
tion. That is, the optimal TCP buffer size is equal to the product of
the bandwidth of the bottleneck link and the RTT, i.e., the effective
bandwidth-delay product of the connection.

Currently, in order to tune buffer sizes appropriately, the grid com-
munity uses diagnostic tools to determine the RTT and the bandwidth
of the bottleneck link. Such tools include pipechar [21], nettimer [23],
nettest [24], pchar [26], iperf [39] and netspec [40]. However, none of
these tools include a client API so applications can tune their TCP
connections and all of the tools require a certain level of network ex-
pertise to install and use. Furthermore, many of these tools ‘pollute’
the network with extraneous probing packets.

To simplify the above tuning process, several services that provide
clients with the correct tuning parameters for a given connection have
been proposed, e.g., AutoNcFTP [25], Web100 [29] and Enable [38], in
order to eliminate what has been called the wizard gap [27].1 Although
these services provide good first approximations and can improve over-
all throughput by two to five times over a stock TCP implementation,
they only measure the bandwidth and delay at connection set-up time.
This makes the implicit assumption that the bandwidth and RTT of a
given connection will not change significantly over the course of the con-
nection. In Section 2, we demonstrate that this assumption is tenuous
at best.

A more dynamic approach to optimizing communication in a grid in-
volves automatically tuning buffers over the lifetime of the connection,
not just at connection set-up. At present, there exist two kernel-level
implementations: auto-tuning [35] and Dynamic Right-Sizing (DRS) [13,
14, 18, 41]. Auto-tuning implements sender-based flow-control adapta-
tion while DRS implements receiver-based flow-control adaptation. Live
WAN tests show that DRS in the kernel can achieve a 30-fold increase
in throughput when the network is uncongested, although speed-ups of
7-8 times are more typical. Although DRS is fully backwards compat-
ible with regular TCP, achieving large speed-ups requires DRS to be
installed on every pair of communicating hosts in a grid. Installing DRS

jgc2003.tex; 1/02/2003; 0:04; p.2

benefits all TCP-based applications, e.g., ftp, multimedia streaming and
WWW, not just grid applications.

Installing DRS requires knowledge about modifying, recompiling
and installing the kernel, along with root privilege to do so. Thus, DRS
functionality is generally not accessible to the typical end user. While
we anticipate that DRS will be incorporated into vender’s kernels so
that it is transparent to the end user, users want improved performance
now. Thus, we also propose a more portable implementation of DRS
in user space. Specifically, we integrate our DRS technique into ftp to
create drsFTP.

drsFTP is similar in many ways to NLANR’s AutoNcFTP [30]. Both
are modified FTP implementations which adjust buffer sizes to increase
performance. The differences are two-fold. First, AutoNcFTP relies on
NcFTP [1] whereas drsFTP uses the de-facto standard FTP daemon
originally from Washington University in St. Louis [4] and the open-
source Netkit FTP client [2]. Second, the buffers in AutoNcFTP are
only tuned at connection set-up while drsFTP buffers are dynamically
tuned over the lifetime of the connection to provide better adaptation
and better overall performance.

The remainder of the paper is organized as follows. Section 2 demon-
strates why dynamic flow-control adaptation is needed over the lifetime
of the connection rather than just at connection set-up only. Sections 3
and 4 describe the DRS technique and its implementation in kernel
space and in user space, respectively. Then, in Section 5, we present
our experimental results, followed by areas of future work in Section 6
and concluding remarks in Section 7.

2. Background

TCP relies on two mechanisms to set its transmission rate: flow
control and congestion control. Flow control ensures that the sender
does not overrun the receiver’s available buffer space (i.e., a sender can
send no more data than the size of the receiver’s last advertised flow-
control window), while congestion control ensures that the sender does
not overrun the network’s available bandwidth. TCP implements these
mechanisms via a flow-control window (fwnd) that is advertised by the
receiver to the sender and a congestion-control window (cwnd) that is
adapted by the sender based on the inferred state of the network.2

Specifically, TCP calculates an effective window, ewnd ≡ min(fwnd ,
cwnd), and then sends data at a rate of ewnd/RTT , where RTT is
the round-trip time of the connection. Currently, cwnd varies dynam-
ically as the network state changes; however, fwnd has traditionally

jgc2003.tex; 1/02/2003; 0:04; p.3

 0

 50

 100

 150

 200

 250

 300

8:00 am 9:00 am 10:00 am 11:00 am Noon 1:00 pm

B
an

dw
id

th
 (

M
bp

s
=

 1
06 b

its
 p

er
 s

ec
)

Time of Day
Figure 1. Bottleneck Bandwidth at 20-Second Intervals

been static despite the fact that today’s receivers are not nearly as
buffer-constrained as they were twenty years ago. Ideally, fwnd should
vary with the bandwidth-delay product (BDP) of the network, thus
providing the motivation for DRS.

Historically, a static fwnd sufficed for all communication because
the BDP of networks was small. Hence, setting fwnd to small values
produced acceptable performance while wasting little memory. Today,
most operating systems set fwnd ≈ 64KB — the largest window avail-
able without scaling [19]. Yet BDPs range between a few bytes (56 Kbps
× 5ms → 36 bytes) and a few megabytes (622Mbps × 100ms →
7.8MB). For the former case, the system wastes over 99% of its al-
located memory (i.e., 36 B / 64KB = 0.05%). In the latter case, the
system potentially wastes up to 99% of the network bandwidth (i.e.,
64KB / 7.8MB = 0.80%).

Over the lifetime of a connection, bandwidth and delay change (due
to transitory queueing and congestion) implying that the BDP also
changes. We use nettimer to quantify how much they change. Figures 1,
2, and 3 show that they can vary quite widely.3 Figure 1 presents the
bottleneck bandwidth between Los Alamos and New York at 20-second
intervals. The bottleneck bandwidth averages 17.2Mbps with a low
and a high of 0.026Mbps and 28.5 Mbps, respectively. The standard
deviation and half-width of the 95% confidence interval are 26.3Mbps
and 1.8 Mbps. Figure 2 shows the RTT, again between Los Alamos

jgc2003.tex; 1/02/2003; 0:04; p.4

 100

 150

 200

 250

 300

 350

 400

 450

 500

8:00 am 9:00 am 10:00 am 11:00 am Noon 1:00 pm

R
ou

nd
-T

ri
p

T
im

e
(m

s)

Time of Day
Figure 2. Round-Trip Time at 20-Second Intervals

 0

 10

 20

 30

 40

 50

 60

 70

8:00 am 9:00 am 10:00 am 11:00 am Noon 1:00 pm

B
an

dw
id

th
-D

el
ay

 P
ro

du
ct

 (
M

bi
ts

 =
 1

06 b
its

)

Time of Day
Figure 3. Bandwidth-Delay Product at 20-Second Intervals

jgc2003.tex; 1/02/2003; 0:04; p.5

and New York, at 20-second intervals. The RTT delay also varies over
a wide range 119–475ms with an average delay of 157 ms. Combining
Figures 1 and 2 results in Figure 3, which shows that the BDP of a
given connection can vary by as much as 61 Mbit.

Based on the above results, the BDP over the lifetime of a con-
nection is continually changing. Therefore, a fixed value for fwnd is
not ideal; selecting a fixed value forces an implicit decision between
(1) under-allocating memory and under-utilizing the network or (2)
over-allocating memory and wasting system resources. Clearly, the grid
community needs a solution that dynamically and transparently adapts
fwnd to achieve good performance without wasting network or memory
resources.

3. Dynamic Right-Sizing (DRS) in the Kernel

Dynamic right-sizing (DRS) lets the receiver estimate the sender’s
cwnd and use that estimate to dynamically change the size of the
receiver’s advertised window fwnd as the receiver’s memory resources
allow. The estimates are also used to keep pace with the growth in the
sender’s congestion window. As a result, the throughput between end
hosts, e.g., in a grid, will only be constrained by the available bandwidth
of the network, rather than some arbitrarily set constant value on the
receiver.

Initially, at connection set-up, the sender’s cwnd is smaller than the
receiver’s advertised window fwnd . To ensure that a given connection
is not flow-control constrained, the receiver must continue to advertise
a fwnd that is larger than the sender’s cwnd before the receiver’s next
adjustment.

The instantaneous throughput seen by a receiver may be larger
than the available end-to-end bandwidth. For instance, data may travel
across a slow link only to be queued up on a downstream router and
then sent to the receiver in one or more fast bursts. The maximum size
of such a burst is bounded by the size of the sender’s cwnd and the
window advertised by the receiver. Because the sender can send no more
than one ewnd window’s worth of data between acknowledgements, a
burst that is shorter than a RTT can contain at most one ewnd ’s worth
of data. Thus, for any period of time that is shorter than a RTT, the
amount of data seen over that period is a lower bound on the size of
the sender’s cwnd . But how does such a distributed system calculate
its RTT?

In a typical TCP implementation, the RTT is estimated by observ-
ing the time between when data is sent and an acknowledgement is
returned. However, during a bulk-data transfer (e.g., from sender to

jgc2003.tex; 1/02/2003; 0:04; p.6

receiver), the receiver may not be sending any data, and therefore, will
not have an accurate RTT estimate. So, how does the receiver infer
delay (and bandwidth) when it only has acknowledgements to transmit
back and no data to send?

A receiver in a computational grid that is only transmitting acknowl-
edgements can still estimate the RTT by observing the time between
when a byte is first acknowledged and the receipt of data that is at least
one window beyond the sequence number that was acknowledged. If the
sending application does not have any data to transmit, the estimated
RTT could be much larger than the actual RTT. Thus, the estimate
acts as an upper bound on the RTT and should only be used when there
is no other source of RTT information. (For a rigorous presentation of
the lower and upper bounds, please see [13, 14].)

We note that DRS is also TCP-friendly in the sense that N flows,
DRS-enabled or not, will each receive a long-term average of 1/N -th of
the bandwidth of a fully utilized network. Since the congestion-control
mechanism governs fairness4 and because it has the same congestion-
control mechanism, DRS responds to congestion the same way as reg-
ular TCP. On an uncongested network, however, DRS will attempt to
utilize the excess capacity that can exist when all the other connections
are artificially limited by their congestion windows. As the network
becomes congested again, DRS throttles back and performs no better
(or worse) than regular TCP.

It has been suggested that DRS violates TCP semantics by assuming
unlimited send buffers. (Large advertised windows require large send
buffers if the network is to be kept full.) This is not the case. There is
nothing in the TCP specification that requires the sender to allocate
buffer space commensurate with the advertised window. A sender is
always free to send at a slower rate than the receiver requests, especially
if insufficient buffers space is available.

4. DRS in User Space: drsFTP

Unlike the kernel-space version of DRS which benefits all applica-
tions transparently, user-space DRS must be implemented by each pair
of communicating applications. In this section, we implement DRS in
a FTP client and server, resulting in drsFTP.

The primary difficulty in developing user-space DRS applications lies
in the fact that user-space code does not have direct access to the state
of the TCP stack. Consequently, drsFTP has no knowledge of TCP
parameters, such as the RTT of a connection, the receiver’s advertised
window or the sender’s congestion window. Information about a connec-

jgc2003.tex; 1/02/2003; 0:04; p.7

tion must be estimated from coarse-grained user-space measurements
rather than from fine-grained TCP connection state.

FTP specifies that commands and replies are sent over a control
channel that is a completely separate TCP connection from the data
channel where the transfer take place. As with AutoNcFTP and Enable,
we focus on (1) adjusting TCP’s system buffers over the data channel of
FTP and (2) using FTP’s stream file-transfer mode. The latter means
that a separate data connection is created for every file transferred.
Thus, the sender always has data to transmit during the lifetime of the
transfer;5 once the file has been completely sent, the data connection
closes

4.1. Determining Available Bandwidth

By definition, we know that the sender always has data to send
throughout the life of the FTP data connection. It then follows that
the sender will send data as fast as possible, limited by its idea of
the congestion- and flow-control windows. Furthermore, the receiver is
receiving data as quickly as the current windows, network and CPU
scheduling conditions allow. Therefore, the average bandwidth a con-
nection obtains is computed by dividing the number of bytes transmit-
ted by the time required to transmit them.

The difficulty lies in selecting the appropriate sampling interval
over which to aggregate the number of bytes transmitted.6 Selecting
too short of an interval dramatically increases overhead and reduces
performance. It also leads to erroneous estimates because of schedul-
ing and buffering effects. On the other hand, selecting too long of
an interval decreases the responsiveness of DRS to changes in avail-
able bandwidth and may reduce performance because the estimated
bandwidth-delay product, and hence, the receiver’s advertised window,
may be artificially small.

In the current implementation of drsFTP, the available bandwidth
is computed through the periodic invocation of a signal handler upon
alarm expiration. Different values for the sampling interval can easily
be tested by varying the expiration time of the alarm. The average
bandwidth available to the connection over the last interval is the
number of bytes received since the last alarm signal divided by the
length of the interval. An appropriate choice for the sample interval
yields estimated bandwidth values of sufficient accuracy.

4.2. Determining RTT

Unlike the procedure for estimating the bandwidth of a connection,
the RTT cannot be inferred in user-space applications without injecting

jgc2003.tex; 1/02/2003; 0:04; p.8

a very small amount of extra traffic into the network. User-space code
does not have access to the inner workings of the TCP stack and hence
cannot know when a given packet is sent nor when its acknowledgement
is received.

To sidestep this problem, we send a small packet on the FTP control
channel for the sender to echo back. The estimated RTT begins with
the sending of a RTT probe packet and ends when its echo is received.
The additional load on the network as the result of RTT probe packets
is generally small, depending on the sampling interval. (Section 4.4
gives an optimization which minimizes the impact of RTT probes.)

We note that sending the RTT probe packet over the control channel
assumes that the control and data channels follow the same route. In
the case of third-party control of a FTP data transfer, however, the
control and data channels are likely to take very different routes. Thus
the RTT estimate may be inaccurate. We send RTT probes over the
control channel to comply with RFC 959 [34], since commands cannot
be sent on the data channel. If probes could be sent out-of-band on the
data channel, then RTT estimates could be obtained in the manner
described above. Sending data out-of-band is possible within Globus
and hence we are working to integrate drsFTP with GridFTP.

4.3. Adjusting the Receiver’s Advertised Window

User-space applications cannot directly set the flow-control window
in most TCP stacks. Instead, they must indirectly set the window
by setting the TCP receive buffer size to an appropriate value via a
setsockopt call.

In the worst case, the sender’s window is doubling with every round
trip during TCP slow start. When it is determined that the receiver
window should increase, the new value should be at least double the
current value. There is no need to double the current value once TCP
is out of slow start. However, it is very difficult, in general, to deter-
mine when slow start ends. Therefore, we increase the receive buffer in
drsFTP by a factor of two over BDP whenever the current buffer size
is less than twice the BDP. (In most protocol stacks, buffer space is
not allocated until it is actually used so excessive memory usage is not
usually a problem in practice.)

4.4. Adjusting the Sender’s Window

To take full advantage of dynamically changing buffer sizes, the
sender’s buffer should adjust in step with the receiver’s. This presents
a problem in user-space implementations because the sender’s code has
no way of determining the receiver’s advertised window size. The FTP

jgc2003.tex; 1/02/2003; 0:04; p.9

protocol specification [34] does not prohibit traffic on the control chan-
nel during data transfer, however. Thus, a drsFTP receiver may inform
a drsFTP sender about changes in buffer size by sending appropriate
messages over the control channel.

Since FTP is a bidirectional data-transfer protocol, the receiver
may be either the server or client. RFC 959 specifies that only clients
may send commands on the control channel, while servers may only
send replies to commands. Thus, a new command and reply must be
added in order to fully implement drsFTP. Serendipitously, the Internet
Draft of the GridFTP protocol extensions to FTP [5] defines a ‘SBUF’
command, which is designed to allow a client to set the server’s TCP
buffer sizes before data transfer commences. We extend the definition
of SBUF to allow this command to be specified during a data transfer,
i.e., to allow buffer sizes to be set dynamically. The full definition of
the expanded SBUF command appears below:

Syntax:

sbuf = SBUF <SP> <ID> <SP> <size>

<ID> ::= <number>

<size> ::= <number>

This command requests the server-PI to set the send-buffer size to
<size> bytes, assuming sufficient buffer space is available. <ID> is
provide to match a SBUF command to its reply. SBUF may be issued
at any time, including before or during an active data transfer. If
specified during a data transfer, it affects the data transfer that
started most recently. The command is informational and need not
be acted upon, thus providing interoperability with existing, non-
drsFTP, applications.

Response Codes:

200 SBUF <SP> <ID> <SP> <size>

The server-PI issues a 200 response code containing the <ID> of
the corresponding command and the new size of the server’s buffer.
<ID> allows the client-PI to match replies to commands in case
multiple SBUF commands are outstanding in the active transfer.
<size> allows the client-PI adjust its buffer usage in case the server-
PI chooses to allocate less than the requested amount of buffer
space.

In addition, we propose a new response code to allow the server-as-
receiver to notify the client-as-sender of changes in the receive window.

jgc2003.tex; 1/02/2003; 0:04; p.10

New Response Code:

126 SBUF <SP> <ID> <SP> <size>

A 126 response may be sent by the server-PI while it is receiving
data from the client-PI. As with the SBUF command, this reply
is informational and need not be acted upon or responded to in
any manner by the client-PI. A non-drsFTP application will sim-
ply ignore the reply, guaranteeing interoperability with a drs-FTP
server.

This response code is consistent with RFC 959 and does not interfere
with any FTP extension or proposed extension.

We note that the SBUF command also provides a vehicle for de-
termining RTT without injecting a separate message into the network.
Since RTT probes need only contain an <ID>, we allow SBUF com-
mands to serve the dual purpose of conveying the receiver’s buffer
size to the sender and probing for the RTT. Separate RTT probes,
as discussed in Section 4.2, are not needed in most instances. Separate
probes only become necessary if the time between buffer-size changes
becomes so large that the RTT becomes too stale. Since the mechanism
for determining RTT via SBUF messages is already in place, “empty”
SBUF messages with the current buffer size serve as the RTT probe in
this case.

4.5. TCP Window Scaling

Because the window-scaling factor in TCP is established at connec-
tion set-up time, an appropriate scale must be set before a new data
connection is opened. Most operating systems allow TCP RCVBUF and
TCP SNDBUF to be set on a socket before a connection attempt is made
and then use the requested buffer size to establish the TCP window
scaling. Figure 4 shows example code for setting an appropriate TCP
window scaling factor under most operating systems.

drsFTP sets the send- and receive-buffer sizes to allow windows of
up to 16 MB worth of data before initiating connection set-up. Once the
connection has been made (and the window scale factor set properly),
drsFTP resets the buffer sizes back to their initial values.

In order to set the window scale factor appropriately, the network
buffer-size limits of the operating system may need to be increased. The
steps involved in increasing the limits are operating system dependent.
See [33] for an example of the steps required for a variety of operating
systems.

jgc2003.tex; 1/02/2003; 0:04; p.11

/* Set sizes to accommodate window scaling */

byteSize = ftpData->maxBufferSize;

setsockopt(servSock, SOL_SOCKET, SO_RCVBUF, &byteSize, sizeof(int));

setsockopt(servSock, SOL_SOCKET, SO_SNDBUF, &byteSize, sizeof(int));

/* Open the connection */

listen(servSock, SERVER_MAX_CONNECTIONS);

clientSock = accept(servSock, NULL, 0);

/* Set buffer size to appropriate value */

byteSize = ftpData->minBufferSize;

setsockopt(clientSock, SOL_SOCKET, SO_RCVBUF, &byteSize, sizeof(int));

setsockopt(clientSock, SOL_SOCKET, SO_SNDBUF, &byteSize, sizeof(int));

Figure 4. Setting TCP Window Scaling in User Space

5. Experiments

In this section, we present results for both kernel- and user-space
implementations of DRS. In particular, we will show that the through-
put for both the kernel- and user-space implementations improves upon
the default configuration by 600% and 300%, respectively.

5.1. Experimental Setup

Our experimental apparatus, shown in Figure 5, consists of three
identical machines connected via Fast Ethernet (100Mbps). The ma-
chines need only be fast enough to ensure that the hosts are not the
bottleneck. Each machine contains dual 400MHz Pentium II processors
with 128 MB of RAM and two network-interface cards (NICs). One
machine acts as a WAN emulator with a 100 ms round-trip time (RTT)
delay; each of its NICs is connected to one of the other machines via
crossover cables (i.e., no switch).

eth1eth0 eth1eth0 eth1eth0

FTP Server WAN Emulator FTP Client

To LAN To LAN

Figure 5. Experimental Apparatus

jgc2003.tex; 1/02/2003; 0:04; p.12

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

M
eg

ab
yt

es

Seconds
Figure 6. Progress of Data Transfers

5.2. Kernel-Space DRS

In the kernel implementation of DRS, the receiver estimates the size
of the sender’s congestion window so it can advertise an appropriate
flow-control window to the sender. Our experiments show that the DRS
algorithm approximates the actual size quite well. Further, we show
that by setting the advertised window using this estimate, DRS keeps
the connection responsive to congestion while removing the artificial
constraints of traditional flow-control adaptation.

5.2.1. Performance
As expected, using large flow-control windows significantly enhances

WAN throughput versus using the default window sizes of TCP. Fig-
ure 6 shows the results of 50 transfers of 64 MB each using ttcp [28], 25
transfers with a default window size of 32 KB for both the sender and
receiver and 25 transfers with DRS. Transfers with the default window
sizes took a median time of 240 seconds to complete while the DRS
transfers only took 34 seconds (or roughly seven times faster).

Figures 7 and 8 trace the window size and flight size of TCP with
the static (default) buffer size and with DRS. (The flight size refers
to the amount of sent but unacknowledged data in the sender’s buffer.
This flight size, in turn, is bounded by the window advertised by the
receiver.) For the traditionally static (default) flow-control window as

jgc2003.tex; 1/02/2003; 0:04; p.13

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

K
ilo

by
te

s

Seconds

Static Window
Static Flight Size

Figure 7. Window and Flight Sizes for Default Buffer Size: Fast Ethernet

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

K
ilo

by
te

s

Seconds

Dynamic Window
Dynamic Flight Size

Figure 8. Window and Flight Sizes for Dynamic Right-Sizing: Fast Ethernet

jgc2003.tex; 1/02/2003; 0:04; p.14

shown in Figure 7, the congestion window quickly grows and the trans-
fer rate is limited by the receiver’s small 32 KB window advertisement.
On the other hand, DRS allows the receiver to advertise a window size
that is roughly twice the largest flight size seen to date (in case the
connection is in slow start). Thus, the flight size is only constrained by
the conditions in the network, i.e., the congestion window. Slow start
continues for much longer and only stops when packet loss occurs.
At this point, the congestion window stabilizes on a flight size that
is roughly seven times higher than the flight size of the static case.
Not coincidentally, this seven-fold increase in the average flight size
translates into the same seven-fold increase in throughput shown in
Figure 6.

In additional tests, we occasionally observe increased queueing delay
caused by the congestion window growing larger than the available
bandwidth. This causes the retransmit timer to expire and reset the
congestion window to one even though the original transmission of the
packet was acknowledged shortly thereafter.

5.2.2. Parallel Streams
One approach to achieving a larger (effective) flow-control window

is to use parallel streams [32, 36, 37]. We compare the aggregate band-
width achieved by parallel streams over Linux 2.2.20 (without auto-
tuning), Linux 2.4.17 (with auto-tuning) and DRS. The experimental
apparatus is similar to that used in Section 5.1 except the hosts have
dual 933 MHz Pentium III processors with 512 MB of RAM and Gi-
gabit Ethernet. The round-trip time is 100 ms. (For more information,
see [42].)

Figure 9 shows the combined bandwidth of the parallel streams as a
function of the number of streams, N . In the first two cases, 2.2.20
(without auto-tuning) and 2.4.17 (with auto-tuning), the combined
bandwidth of N streams increases linearly because the aggregate size
of the flow-control windows is still less than the congestion-control
window.

Since DRS ensures that connections are congestion-control limited
rather than flow-control limited, using multiple streams increases the
effective rate at which the congestion-control window opens during slow
start. Hence the combined bandwidth increases at a faster rate than
without DRS.

As the number of parallel streams increases, however, the duration
of a transfer decreases for a fixed-size file. Thus the fraction of time
spent in slow start increases and the average bandwidth of each stream
is reduced. The combination of the two effects causes the combined
bandwidth to level off.

jgc2003.tex; 1/02/2003; 0:04; p.15

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

C
om

bi
ne

d
B

an
dw

id
th

 (
M

bp
s

=
 1

06 b
ps

)

Number of Parallel Processes

Linxu 2.4.17 (DRS)
Linux 2.4.17 (Auto)
Linux 2.2.20 (None)

Figure 9. Comparison of Combined Performance with Parallel Streams

5.2.3. Low-Bandwidth Connections
Figures 10 and 11 trace the window size and flight size of TCP

with the static (default) buffers and with DRS over a 56K modem.
Because DRS provides the sender with indirect feedback about the
achieved throughput rate, DRS actually causes a TCP Reno sender
to induce less congestion and fewer retransmissions over bandwidth-
limited connections. Although the overall throughput measurements for
both cases are virtually identical, the static (default) window generally
has more data in flight as evidenced by the roughly 20% increase in
the number of re-transmissions shown in Figure 12. This additional
data in flight is simply dropped because the link cannot support that
throughput.

5.2.4. Buffer Management
Under normal circumstances, the Linux 2.4 kernel restricts each

connection’s send buffers to be just large enough to fill the current
congestion window. When the total memory used exceeds a threshold,
the memory used by each connection is further constrained.

While DRS was designed to support distributed computing with
comparatively few connections over high BDP networks, Linux auto-
tuning was designed to support web servers with many concurrent
connections over low BDP networks. The two approaches are compli-
mentary; they each handle different ends of the networking spectrum.

jgc2003.tex; 1/02/2003; 0:04; p.16

0

5

10

15

20

25

30

35

40

 0 10 20 30 40 50 60

K
ilo

by
te

s
(2

10
 b

yt
es

)

Seconds

Static Window Size
Static Flight Size

Figure 10. Window and Flight Sizes for Default Buffer Size: 56K Modem

0

5

10

15

20

25

30

35

40

 0 10 20 30 40 50 60

K
ilo

by
te

s
(2

10
 b

yt
es

)

Seconds

Dynamic Window Size
Dynamic Flight Size

Figure 11. Window and Flight Sizes for Dynamic Right-Sizing: 56K Modem

jgc2003.tex; 1/02/2003; 0:04; p.17

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e

R
et

ra
ns

m
its

Seconds

Static
Dynamic

Figure 12. Retransmissions in Low-Bandwidth Links

(A more in-depth analytic and quantitative discussion of the differences
between Linux 2.4.x auto-tuning and DRS can be found in [42].)

5.3. drsFTP: DRS in User Space

Since a user-space implementation does not have access to fine-
grained TCP state, performance improvements are more modest than
for the kernel implementation. Still, the performance is dramatically
better than with the default TCP buffer sizes.

5.3.1. Performance
The experimental apparatus consists of the same three machines

discussed in Section 5.2.2. The WAN emulator, which is implemented
using TICKET technology [43], forwards packets at line rate and has
a user-settable delay. (In the results that follow, the average round-
trip time is 102.1ms.) All FTP traffic, both data and control, occurs
through the WAN emulator.

As a baseline, we use stock FTP with TCP receive buffers set at
64KB. (Most modern operating systems set their default TCP buffers
to 32 or 64 KB. Therefore, this number represents the high end of OS-
default TCP buffer sizes.) We next test drsFTP, allowing the buffer
size to vary in response to network conditions, starting from 64KB.
Last of all, we test statically-tuned FTP with TCP buffers sizes which
represent over- and under-provisioning.

jgc2003.tex; 1/02/2003; 0:04; p.18

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 4 8 16 32 64

B
an

dw
id

th
 (

M
bp

s
=

 1
06 b

ps
)

File Transfer Size (MB = 220 bytes)

Over-Provisioned FTP
Statically-Tuned FTP
drsFTP
FTP

Figure 13. Comparison of FTP, drsFTP and statically-tuned FTP

The over-provisioned buffer size, representing the best performance
possible, is 16MB, which is larger than the BDP (12.2MB). The under-
provisioned buffer size is 212.5 KB, which represents a BDP that is
sampled when the network is loaded. (The median value of BDP for
the data in Figure 3 is 143.3KB. A buffer size of 212.5 KB is in the
66th percentile.)

For each test, we transfer a set of files, ranging from 8 KB to 64 MB,
over the emulated WAN. The drsFTP sampling interval used to esti-
mate the available bandwidth is one second, a conservative configura-
tion with very low overhead. (The performance is not sensitive to the
duration of the sampling interval as long as the sampling interval is
greater than the round-trip time. This is an artifact of not emulating
cross-traffic.)

Figure 13 shows the average FTP bandwidth as a function of the
size of the transfer. (The x-axis has a logarithmic scale with markers
placed according to the powers-of-two file sizes tested. The width of
the 95% confidence interval is less than ±5% in all cases.) The average
bandwidth of FTP with stock buffer sizes approaches 5 Mbps for file
sizes as small as 8 MB. In contrast, the average bandwidth of drsFTP
asymptotically approaches 30 Mbps at over 64 MB file transfers. Thus,
the utilization of available bandwidth by drsFTP is approximately six
times better than stock FTP.

jgc2003.tex; 1/02/2003; 0:04; p.19

The best bandwidth (34.5 Mbps) is achieved by the over-provisioned
FTP which has larger-than-required buffer sizes. As shown, drsFTP
achieves 78.7% of the over-provisioned bandwidth. The primary reason
for the difference in performance is that drsFTP must rely on coarse-
grained measurements to infer available bandwidth and round-trip time
and hence may not grow the buffer sizes quickly enough. This is an
inherent limitation indicative of the interim nature of the drsFTP
application. Even though its performance is not as good as the kernel-
space implementation [13, 14], drsFTP was developed to provide the
benefits of DRS to the grid community while vendors implement DRS
in their kernels.

Figure 13 also compares the average bandwidth of drsFTP to a
statically-tuned case where the BDP was sampled at an inopportune
time, e.g., at one of the lower data points in Figure 3. Here we see
that drsFTP utilizes the available bandwidth 2.4 times better than
the statically-tuned case. The comparison illustrates the benefit of
inferring the available bandwidth and setting the flow-control buffers
automatically.

So far, we have only addressed the issue of optimizing transfer rates.
We now turn our attention to buffer usage. As motivation, we conjec-
ture that memory consumption will become a more serious issue as
computational grids become widely used and hence indispensable parts
of the computational infrastructure.

While applications are able to use buffer space with abandon now,
we envision the time when grid nodes will become heavily loaded with
large numbers of potentially diverse applications. One example might
be a repository for human genome information which will be accessed
simultaneously by thousands of researchers. If each connection over-
provisions its buffers, it is likely that the node will run out of buffer
space and reject connections which could otherwise be serviced had the
connections been more frugal.

Figure 14 shows the growth of the drsFTP receive buffer as a func-
tion of time during three transfers of a 512MB file. The final buffer sizes
for the three transfers range from 1.9 MB to 3.1 MB, with an average
of 2.7 MB. Due to changing conditions during the transfers, the buffer
sizes grow at different rates, particularly during the latter part of the
transfer. In contrast, the over-provisioned FTP uses a 16 MB buffer
which is statically allocated during connection set-up. Thus drsFTP
achieves over three-quarters of the over-provisioned performance while
only using one-sixth the amount of memory. In other words, drsFTP
achieves an average of 10.1 Mbps per MB of buffer space used while
statically-tuned FTP achieves only 2.2 Mbps per MB of buffer space
used.

jgc2003.tex; 1/02/2003; 0:04; p.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0 1 2 3 4 5 6 7 8

R
ec

ei
ve

 B
uf

fe
r

Si
ze

 (
M

B
 =

 2
20

 b
yt

es
)

Elapsed Time (seconds)

Run 1
Run 2
Run 3

Figure 14. drsFTP Buffer Sizes over Time

0.01

0.10

1.00

10.00

100.00

1 4 8 16 32 64

M
bp

s
/ M

B
 (

10
6 b

ps
 /

220
 b

yt
es

)

File Transfer Size (MB = 220 bytes)

drsFTP
Over-Provisioned FTP
Statically-Tuned FTP

Figure 15. Mbps per MB of Buffer Space

jgc2003.tex; 1/02/2003; 0:04; p.21

As Figure 15 shows, drsFTP achieves five times better utilization
of the network with respect to memory than the over-provisioned case.
Even if the theoretically optimal BDP of 12.2 MB been allocated in-
stead of over-provisioning, drsFTP would still have been able to support
more connections with a 3.6 times improvement in Mbps per MB. The
difference between drsFTP and the statically-tuned case where the
BDP was sampled at an inopportune time is even more dramatic.

6. Future Work

The results of the experiments conducted so far indicate that DRS,
both kernel- and user-space, are likely to perform well “in the wild”.
Anecdotally, we have observed very good performance on live networks
but still need to rigorously quantify the improvements. We also need to
do more testing on connections with low and medium bandwidth-delay
products.

Next, DRS needs to be thoroughly studied in the context of parallel
streams. Does DRS subsume the need for parallel streams or will a
combined approach be best? Section 5.2.2 suggests that fewer DRS
streams are needed than with regular TCP.

Finally, we are working to get DRS incorporated into the official
Linux source tree. Once incorporated, applications will transparently
see an increase in delivered bandwidth. In the mean time, we are
continuing to develop drsFTP and to integrate drsFTP with GridFTP.

7. Conclusion

This paper makes three significant contributions to the high-speed
networking and grid-computing communities. First, we demonstrated
that the bandwidth-delay product (BDP) can vary widely over the
lifetime of a connection. Therefore, simply tuning buffers at connection
set-up is not good enough; they must be tuned over the lifetime of the
connection. This is the motivation for Dynamic Right-Sizing (DRS).

Further, since we used nettimer to measure the BDP of a connec-
tion, our estimates may be conservative because nettimer measures
static bottleneck bandwidth and dynamic delay. With the recent release
of pathload [20], which measures dynamic available bandwidth and
delay, our initial tests indicate that the BDP actually fluctuates by an
additional order of magnitude.

Second, we illustrated how a receiver can measure the bandwidth
and round-trip delay of a connection (i.e., BDP) without ‘polluting’
the network with any extraneous probing packets. This BDP value is
then used as an upper bound for the flow-control window in DRS.

jgc2003.tex; 1/02/2003; 0:04; p.22

Third, in the context of DRS, we have shown how a TCP receiver
can determine the approximate size of the sender’s congestion window
so that the receiver can advertise a flow-control window that neither
needlessly constrains throughput nor unnecessarily over-allocates buffer
space. Furthermore, this can be done automatically and transparently
while abiding by TCP semantics. It can also be done in user space,
although with a small reduction in performance.

Finally, we are making our implementations of DRS in the Linux
2.4 kernel and in user-space available under an open-source license.
The DRS kernel implementation has already been incorporated into the
Web100 project [11]. Furthermore, we are in the process of integrating
drsFTP with GridFTP to make the benefits of Dynamic Right-Sizing
available to the Globus community.

Notes

1The wizard gap is the difference between the network performance that a net-
work ‘wizard’ can achieve by appropriately tuning buffer sizes and the performance
of an untuned application.

2Because sender-side auto-tuning [35] ignores fwnd , it breaks TCP semantics by
allowing the sender to overrun the receiver whether inadvertently (as in an FTP
transfer) or maliciously (as in a denial-of-service attack).

3Although we would have liked to sample at the granularity of the RTT, the
overhead of running nettimer and other tools in user space prevented us from
obtaining the measurements we sought.

4DRS does assume that end hosts have a fair buffer allocation policy. If the buffer
allocation policy is not fair, both regular TCP and DRS will be unfair. The fault
lies with the buffer allocation policy not the transport protocol.

5We assume the end-hosts are not bottlenecks and hence it makes sense to seek
higher bandwidth.

6Equivalently, we can select a fixed number of bytes to be received periodically
and measure how long it takes.

References

1. ‘NcFTP Software Client and Server’. http://www.ncftp.com/.
2. ‘The Netkit FTP Client’. http://freshmeat.net/projects/netkit/.
3. ‘The Particle Physics Data Grid’. http://www.cacr.caltech.edu/ppdg/.
4. ‘The Washington University Archive FTP daemon (wu-ftpd)’. http://www.

wu-ftpd.org/.
5. Allcock, W. et al.: 2001, ‘GridFTP: Protocol Extensions to FTP for the Grid’.

http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf.
6. Allman, M. et al.: 2000, ‘Ongoing TCP Research Related to Satellites’. IETF

RFC 2760.
7. Allman, M., D. Glover, and L. Sanchez: 1999, ‘Enhancing TCP Over Satellite

Channels Using Standard Mechanisms’. IETF RFC 2488.

jgc2003.tex; 1/02/2003; 0:04; p.23

8. Bansal, D., H. Balakrishnan, S. Floyd, and S. Shenker: 2001, ‘Dynamic Be-
havior of Slowly-Responsive Congestion Control Algorithms’. In: SIGCOMM
2001. San Diego, CA.

9. Chervenak, A., I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke: 2001,
‘The Data Grid: Towards an Architecture for the Distributed Management and
Analysis of Large Scientific Datasets’. International Journal of Supercomputer
Applications 23(3), 187–200.

10. Childers, L., T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi:
2000, ‘Access Grid: Immersive Group-to-Group Collaborative Visualization’.
In: Proceedings of the 4th International Immersive Projection Workshop.

11. Dunigan, T. and F. Fowler, ‘Personal Communication with Web100 Project’.
2002.

12. Feng, W. and P. Tinnakornsrisuphap: 2000, ‘The Failure of TCP in High-
Performance Computational Grids’. In: Proceedings of SC 2000: High-
Performance Networking and Computing Conference.

13. Fisk, M. and W. Feng: 2000, ‘Dynamic Adjustment of TCP Window Sizes’.
Technical Report Los Alamos Unclassified Report (LAUR) 00-3221, Los
Alamos National Laboratory.

14. Fisk, M. and W. Feng: 2001, ‘Dynamic Right-Sizing: TCP Flow-Control
Adaptation’. In: Proceedings of SC 2001: High-Performance Networking and
Computing Conference.

15. Floyd, S.: 2002, ‘HighSpeed TCP for Large Congestion Windows’. http://

www.ietf.org/internet-drafts/draft-floyd-tcp-highspeed-01.txt.
16. Foster, I. and C. Kesselman (eds.): 1998, The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers.
17. Foster, I., C. Kesselman, and S. Tuecke: 2001, ‘The Anatomy of the Grid: En-

abling Scalable Virtual Organizations’. International Journal of Supercomputer
Applications.

18. Gardner, M., W. Feng, and M. Fisk: 2002, ‘Dynamic Right-Sizing in FTP:
Enhancing Grid Performance in User Space’. In: Proceedings of the IEEE
Symposium on High-Performance Distributed Computing.

19. Jacobson, V., R. Braden, and D. Borman: 1992, ‘TCP Extensions for High
Performance’. IETF RFC 1323.

20. Jain, M. and C. Dovrolis: 2002, ‘End-to-end Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput’. In:
Proceedings of the Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM).

21. Jin, G., G. Yang, B. Crowley, and D. Agrawal: 2001, ‘Network Characteriza-
tion Service’. In: Proceedings of the IEEE Symposium on High-Performance
Distributed Computing.

22. Kelly, T.: 2002, ‘On Engineering a Stable and Scalable TCP Variant’. Technical
Report CUED/F-INFENG/TR.435, Cambridge University Engineering De-
partment. http://www-lce.eng.cam.ac.uk/~ctk21/papers/sstcp-variant.

pdf.
23. Lai, K. and M. Baker: 2001, ‘Nettimer: A Tool for Measuring Bottleneck

Link Bandwidth’. In: Proceedings of the USENIX Symposium on Internet
Technologies and Systems.

24. Lawrence Berkley National Laboratory, ‘Nettest: Secure Network Testing and
Monitoring’. http://www-itg.lbl.gov/nettest/.

jgc2003.tex; 1/02/2003; 0:04; p.24

25. Liu, J. and J. Ferguson: 2000, ‘Automatic TCP Socket Buffer Tuning’. In: Pro-
ceedings of SC 2000: High-Performance Networking and Computing Conference
(Research Gem). http://dast.nlanr.net/Projects/Autobuf.

26. Mah, B., ‘pchar: A Tool for Measuring Internet Path Characteristics’. http:

//www.employees.org/~bmah/Software/pchar.
27. Mathis, M., ‘Pushing Up Performance for Everyone’. http://www.ncne.

nlanr.net/news/workshop/19999/991205/Talks/mathis_991205_Pushing_

Up_Performance/.
28. Muuss, M. J., ‘The TTCP Program’. http://ftp.arl.mil/~mike/ttcp.html.
29. National Center for Atmospheric Research and Pittsburgh Supercomputing

Center and National Center for Supercomputing Applications, ‘The Web100
Project’. http://www.web100.org/.

30. National Laboratory for Applied Network Research, ‘Automatic TCP Window
Tuning and Applications’. http://dast.nlanr.net/Projects/Autobuf_v1.0/
autotcp.html.

31. Partridge, C. and T. Shepard: 1997, ‘TCP/IP Performance over Satellite Links’.
IEEE Network.

32. Pittsburgh Supercomputing Center, ‘Enabling High-Performance Data Trans-
fers on Hosts’. http://www.psc.edu/networking-/perf_tune.html/.

33. Pittsburgh Supercomputing Center, ‘Enabling High Performance Data Trans-
fers on Hosts’. http://www.psc.edu/networking/perf_tune.html.

34. Postel, J. and J. Reynolds: 1995, ‘File Transfer Protocol (FTP)’. IETF RFC
959.

35. Semke, J., J. Mahdavi, and M. Mathis: 1998, ‘Automatic TCP Buffer Tuning’.
Computer Communications Review, ACM SIGCOMM 28(4).

36. Sivakumar, H., S. Bailey, and R. L. Grossman: 2000, ‘PSockets: The Case for
Application-level Network Striping for Data Intensive Applications using High
Speed Wide Area Networks’. In: Supercomputing.

37. Tierney, B.: 2001, ‘TCP Tuning Guide for Distributed Applications on Wide-
Area Networks’. In: USENIX & SAGE Login. http://www-didc.lbl.gov/

tcp-wan.html.
38. Tierney, B., D. Gunter, J. Lee, and M. Stoufer: 2001, ‘Enabling Network-Aware

Applications’. In: Proceedings of the IEEE International Symposium on High-
Performance Distributed Computing.

39. Tirumala, A. and J. Ferguson: 2001, ‘IPERF’. http://dast.nlanr.net/

Projects/Iperf/index.html.
40. University of Kansas, Information & Telecommunication Technology Center,

‘NetSpec: A Tool for Network Experimentation and Measurement’. http:

//www.ittc.ukans.edu/netspec/.
41. Weigle, E. and W. Feng: 2001, ‘Dynamic Right-Sizing: A Simulation Study’. In:

Proceedings of IEEE International Conference on Computer Communications
and Networks. http://public.lanl.gov/ehw/papers/ICCCN-2001-DRS.ps.

42. Weigle, E. and W. Feng: 2002a, ‘A Comparison of TCP Automatic Tun-
ing Techniques for Distributed Computing’. In: Proceedings of the IEEE
Symposium on High-Performance Distributed Computing (HPDC-11).

43. Weigle, E. and W. Feng: 2002b, ‘TICKETing High-Speed Traffic with Com-
modity Hardware and Software’. In: Proceedings of the Third Annual Passive
and Active Measurement Workshop (PAM2002).

jgc2003.tex; 1/02/2003; 0:04; p.25

jgc2003.tex; 1/02/2003; 0:04; p.26

